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Abstract—The ability to recognize and respond to human
emotions has become a crucial component in enhancing human-
computer interaction, with the development of speech emo-
tion recognition technologies playing a pivotal role in this
advancement. While deep learning models have driven significant
progress in the field of speech emotion recognition, traditional
machine learning algorithms offer a practical alternative, bal-
ancing performance with lower computational requirements.
This study presents a comprehensive approach to speech emo-
tion recognition using the Berlin Emotional Speech Database,
classifying seven emotional states: anger, sadness, anxiety or
fear, disgust, boredom, happiness, and neutrality. The study
employs a range of acoustic features, including pitch, RMS
energy, MFCCs, and formants, which are combined with 14
statistical descriptors and extracted using tools like OpenSMILE.
Preprocessing steps, such as normalization, noise reduction, and
silence removal, are applied to enhance the quality and reliability
of the data. The performance of traditional machine learning
models, including Support Vector Machine, Random Forest, and
k-Nearest Neighbors, is evaluated on the processed dataset. The
results demonstrate the effectiveness of these traditional models,
with Support Vector Machine achieving the highest classification
accuracy of 90.65%, followed by Random Forest and k-Nearest
Neighbors. The results of this study highlight the capacity of
traditional machine learning techniques to effectively capture
the complexities of emotional expression, while circumventing
the computational burden associated with deep learning models.
The practical relevance of this research extends to real-time
applications across various domains, including healthcare, virtual
assistants, and customer service, where the demand for efficient
and reliable emotion recognition systems is paramount.
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I. INTRODUCTION

Recognizing and responding to human emotions has be-
come a crucial component in enhancing human-computer
interaction, enabling systems to comprehend, interpret, and
adapt to users’ emotional states. This capability enhances
the naturalness, engagement, and personalization of various
applications, including virtual assistants, telecommunications,
healthcare, and customer service, where accurately detecting
emotional cues can improve user satisfaction and service
quality. By integrating emotion-aware mechanisms, Speech
Emotion Recognition bridges the gap between technology
and human-centric experiences, fostering more intuitive and
context-aware interfaces.

Despite its growing importance, emotion recognition remains
a challenging task due to the subtle and dynamic nature of
emotional expression in speech. Variations in pitch, energy,
and speech patterns are often nuanced and highly dependent
on linguistic, cultural, and contextual factors, making it diffi-
cult to consistently extract discriminative emotional features.
While deep learning approaches have demonstrated significant
improvements in performance, they often come with high
computational costs, limiting their feasibility for real-time
and resource-constrained applications. This trade-off between
accuracy and efficiency poses a critical bottleneck in deploying
scalable and accessible solutions across diverse real-world
scenarios.

To address these limitations, this study investigates traditional
machine learning techniques as a computationally efficient al-
ternative to deep learning. Using engineered acoustic features,
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including pitch, Mel-frequency cepstral coefficients, root mean
square, energy, and formants, in addition to optimized ML
classifiers, this approach seeks to achieve a balance between
accuracy and efficiency. Unlike deep learning models, which
require extensive training data and computational resources,
traditional ML methods offer interpretability, lower computa-
tional overhead, and adaptability to real-time environments.
The primary objective of this study is to classify seven emo-
tional states—anger, sadness, anxiety/fear, disgust, boredom,
happiness, and neutrality—using the Berlin Emotional Speech
Database. The methodology follows a structured pipeline,
including preprocessing for noise reduction, feature extraction
from acoustic properties, and classification using Support
Vector Machines, Random Forest, and k-Nearest Neighbors.
Feature engineering plays a pivotal role in this process, as
carefully designed features can effectively capture the unique
characteristics of emotional speech, directly influencing model
accuracy and robustness.

Through this study, we demonstrate the effectiveness of tradi-
tional machine learning models in emotion recognition tasks,
emphasizing a balanced approach that achieves high accuracy
without compromising computational efficiency. Our findings
aim to provide insights for future advancements in SER,
particularly in applications that require real-time emotional
detection and responsive human-computer interfaces.

II. RELATED WORK

Over the years, the field of Speech Emotion Recognition
has experienced remarkable progress, transitioning from sys-
tems capable of recognizing only isolated words to advanced,
continuous recognition models that can operate independently
of the speaker and accommodate large vocabularies. This
evolution underscores the growing need for systems that can
comprehend not only the spoken words but also the underlying
emotional states. Despite these advancements, Speech Emotion
Recognition continues to face significant challenges, including
the confounding factors of background noise, cultural and
environmental differences, and variations in individual speech
characteristics, rendering accurate emotion detection a persis-
tent challenge [1][2].

To overcome these challenges, deep learning methods have
significantly enhanced SER performance, particularly on large-
scale and complex datasets [3][4]. For instance, Yuan et al.
developed a model that leverages adversarial learning to isolate
emotional information from speaker-specific characteristics,
enabling it to generalize more effectively across diverse speak-
ers and languages [5].In one study, Idoko compared CNN and
LSTM models for SER, using Mel-Frequency Cepstral Co-
efficients (MFCCs) and wavelet-based features. CNN outper-
formed LSTM, achieving 61% accuracy compared to LSTM’s
56% [6]. In another study Pham et.al.,[7] implemented CNN
and achieved 76% accuracy categorizing seven emotions.
These results highlight the potential of deep learning archi-
tectures in capturing intricate emotional patterns; however,
the computational complexity of such models remains a ma-
jor concern, especially for real-time and resource-constrained

applications. Furthermore, researchers have incorporated Au-
tomatic Speech Recognition (ASR) models to enhance SER
performance, particularly in cases where data scarcity limits
deep learning models’ effectiveness. Self-supervised learning
frameworks, such as Wav2Vec 2.0, have been adapted to
improve SER accuracy and robustness in real-world scenarios
[8][4]. Additionally, architectures like CNNs, Deep CNNs
(DCNNs), and Recurrent Neural Networks (RNNs) excel in
extracting spatial, spectral, and temporal features from speech
signals, allowing models to learn local and global patterns
crucial for emotion classification [10][11]. Feature selection
plays a pivotal role in SER, as the choice of features di-
rectly affects model accuracy and robustness. Sakurai and
Kosaka demonstrated the advantages of combining acoustic
and linguistic features, while others have explored multi-level
fusion techniques to integrate emotional characteristics across
different feature sets [9][12]. Furthermore, pitch fusion-based
models have proven particularly effective for tonal languages,
where pitch variations encode distinct emotional cues, as
demonstrated in Thanh et al.’s study on Vietnamese speech
datasets [13].

Although researchers have explored model compression, quan-
tization, and knowledge distillation to reduce the computa-
tional cost of deep learning models, these approaches often
trade off accuracy or require additional fine-tuning. Conse-
quently, there remains a need for lightweight and interpretable
models that balance computational efficiency with classifica-
tion performance. This study, therefore, focuses on traditional
machine learning models that prioritize efficiency and inter-
pretability, making SER feasible for settings with limited com-
putational resources. By utilizing the Berlin Emotional Speech
Database (EmoDB) and targeting essential acoustic features,
this research seeks to find a balance between model simplicity
and accuracy, ultimately broadening SER’s applicability in
real-world, practical scenarios.

III. METHODOLOGY

This research explores the use of traditional machine learn-
ing algorithms to classify diverse emotional states from audio
speech samples in the domain of Speech Emotion Recognition.
The methodology involves four main stages: dataset selection,
preprocessing, feature extraction, and classification. For this
study, we utilized the Berlin Emotional Speech Database
(EmoDB), applying SMO (SVM), Random Forest, and k-
Nearest Neighbors (k-NN) algorithms for classification. Each
stage is elaborated upon below.

A. Dataset

The Berlin Emotional Speech Database (EmoDB) [14]
was selected for its clear emotional annotations and high-
quality recordings. This dataset includes 535 speech samples
that cover seven emotional categories: anger (127 samples),
boredom (81), fear/anxiety (69), happiness (71), sadness (62),
disgust (46), and neutrality (79). The recordings were made
by 10 professional speakers (five male and five female),
ensuring expressive vocal quality. Although the controlled
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nature of EmoDB may limit generalization, it provides a solid
foundation for evaluating our SER models in a standardized
setting.

B. Pre-Processing

The preprocessing phase prepares raw audio files for anal-
ysis, enhancing the accuracy of feature extraction and classi-
fication. Each audio sample underwent the following steps:

o Normalization: We standardized the volume across all
samples to ensure that variations in loudness did not
introduce bias, allowing a consistent focus on emotional
content.

« Silence Removal: Non-speech segments and minor back-
ground noise were removed, refining the data to focus on
voiced regions that are critical for emotion identification.

« Padding: For consistency, zero-padding was applied to the
end of shorter audio samples. This step ensured that each
file had a uniform length, facilitating efficient processing
and model training.

o Noise Reduction: Background noise was minimized to
improve clarity, ensuring that emotional cues were pre-
served and pronounced in each audio sample.

These preprocessing steps collectively enhanced data qual-
ity, setting a reliable base for the subsequent feature extraction
and classification stages.

C. Feature Extraction

The core of SER lies in capturing nuanced acoustic features
that represent different emotional expressions. For this study,
we employed the OpenSMILE, Librosa, and Parselmouth li-
braries to extract a comprehensive set of 238 features, focusing
on essential acoustic and statistical properties that contribute
to emotion recognition.

Four primary types of features were extracted:

o Pitch (Fundamental Frequency): Pitch, as a key acoustic
feature, reflects emotional intensity. For instance, high-
pitch frequencies often indicate emotions like happiness
or anger, while lower pitch may signal sadness.

o Root Mean Square (RMS) Energy: RMS energy provides
insight into the loudness of speech, which correlates with
emotional arousal. Higher energy levels are typical in
intense emotions, such as anger, aiding in understanding
emotional intensity.

o Mel-Frequency Cepstral Coefficients (MFCCs 1-12):
MFCCs are widely recognized in audio processing for
capturing short-term spectral nuances, making them es-
sential for identifying vocal subtleties across emotions.

o Formants (F1, F2, F3): Formants represent vocal tract
resonances that shift with different emotional states.
These resonances are critical for capturing emotional
expressions embedded in speech.

To deepen analysis, we calculated 14 statistical descriptors
for each feature, including metrics such as maximum, mini-
mum, range, mean, RMS, standard deviation, skewness, kur-
tosis, percentiles, and inter-quartile range. These descriptors

capture the variability of features, providing a comprehensive
view of the emotional characteristics present in the dataset.

D. Classification

Following preprocessing and feature extraction, we uti-
lized three machine learning models—SMO (SVM), Random
Forest, and k-NN—chosen for their unique capabilities in
handling different aspects of the data. Each model is described
below:

e Support Vector Machine (SVM): We applied SVM with
the Sequential Minimal Optimization (SMO) algorithm,
which efficiently handles high-dimensional data. This
model is particularly effective for distinguishing emo-
tions that have distinct acoustic profiles. Formants were
excluded from this model to reduce complexity, allowing
faster computation without compromising classification
accuracy.

o Random Forest: The Random Forest algorithm combines
multiple decision trees trained on random subsets of
data. This ensemble approach reduces the likelihood of
over-fitting and provides insights into feature importance,
which is valuable for interpreting emotional patterns.
Hyper parameters, including the number and depth of
trees, were tuned to balance accuracy and computational
efficiency.

e k-Nearest Neighbors (k-NN): The k-NN algorithm clas-
sifies samples based on their proximity to labeled neigh-
bors, which works well in SER, where similar emo-
tions cluster in feature space. Optimal performance was
achieved by tuning the number of neighbors (k) to
enhance classification accuracy based on local patterns.

Each model was fine-tuned using cross-validation to iden-
tify the most effective hyperparameters, thereby optimizing
model accuracy and performance. This approach allowed us
to leverage each model’s strengths, achieving reliable and
robust emotion classification across the EmoDB dataset. By
employing hyper-parameter selection and tuning using CV-
ParameterSelection in WEKA, accuracy, precision, and recall
were higher across all models with tuning than without tuning.

IV. RESULTS

To assess the effectiveness of our SER approach, we eval-
vated the Support Vector Machine (SVM), Random Forest,
and k-Nearest Neighbors (k-NN) models based on their per-
formance in classifying the seven emotions within the EmoDB
dataset. We used several metrics, including accuracy, precision,
recall, and F-measure, to quantify each model’s effectiveness.
Precision reflects the accuracy of positive predictions. Higher
precision indicates fewer misclassified emotions. In other
words, it measures how many of the predicted instances of an
emotion is actually correct. The calculation to compute this

is: ..
.. True Positives
Precision =

True Positives + False Positives

. Recall indicates the model’s ability to identify actual pos-
itives. Higher recall indicates fewer missed emotions. This
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measures how many actual instances of an emotion are cor-
rectly identified The calculation to compute this is:

True Positives
True Positives + False Negatives

Recall =

. F-measure provides a balanced assessment by combining
precision and recall. Higher F-measure values demonstrate the
model’s capability to maintain both accuracy and consistency
in emotion recognition. Additionally, confusion matrices were
created to reveal each model’s specific strengths and areas for
improvement across different emotions.

A. Model Performance Overview

All three models exhibited strong performance, although to
varying extents. The SVM model demonstrated the highest
classification accuracy, achieving an overall score of 90.65%
and an F-measure exceeding 90%, underscoring its impressive
capability in accurately distinguishing emotions across the
comprehensive dataset. The Random Forest model closely
followed with an accuracy of 87.48%, while the k-NN model
attained 87.1%. These results suggest that the SVM model’s
exceptional capacity to handle high-dimensional data con-
tributes to its distinct advantage in recognizing even the most
subtle emotional variations within the dataset. Additionally,
the execution times of these machine learning models do not
exceed a mere 0.3 seconds, highlighting their efficiency and
suitability for practical applications.
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Fig. 1. A comparison of F-measure and Accuracy across each model

B. Precision and Recall Analysis by Emotion

A closer examination of precision and recall values for each
emotion across the models, illustrated in Figures 2-4, reveals
distinct trends in model performance:

SVM: This model performed well in accurately identifying
emotions such as anger, neutrality, and sadness, suggesting
that it effectively utilizes distinct acoustic features associated
with these emotions. However, it encountered challenges with
the anxiety/fear category, where recall was lower due to
overlapping characteristics with sadness and neutrality. SVM’s
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Fig. 2. Precision and Recall for each emotion using SVM model

ability to manage high-dimensional data likely contributed to
its strong performance on more distinct emotional states.

Random Forest: Random Forest demonstrated strong pre-
cision and recall for emotions like happiness and neutrality,
benefiting from its ensemble learning approach, which cap-
tures a broad range of emotional patterns.

RFT
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Fig. 3. Precision and Recall for each emotion using RFT model

However, similar to SVM, Random Forest struggled with
emotions that shared similar acoustic properties, such as
anxiety/fear and disgust share overlapping spectral features,
particularly in pitch and energy variation, making them harder
to differentiate. Random Forest, which relies on decision tree
splits, may struggle when feature distributions are similar.

k-NN: The k-NN model performed well with emotions
like sadness and neutrality but was more sensitive to noise,
resulting in reduced accuracy for anxiety/fear. This sensitivity
highlights k-NN’s limitations due to its reliance on proximity-
based classification, which makes emotions without distinct
clusters in feature space more prone to misclassification. Al-
though tuning the number of neighbors improved performance
to some degree, k-NN remained vulnerable to subtle variations
in audio features.
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Fig. 5. SMO Hyper Parameter Tuning Comparison

C. Hyperparameter Tuning Analysis

A comparison of these models shows that hyperparameter
tuning using CVParameterSelection greatly benefited each
model’s accuracy, precision, and recall. Thus, leading to the
most optimal performance for classifying emotions. The hy-
perparameter tuning allows the models to better fit the complex
patterns in the data, reducing overfitting or underfitting.

¢ SMO: With the SMO model, all evaluation metrics in-
creased roughly 5%. The parameters included: 10 folds
for cross validation, 1 random seed, a complexity param-
eter set to 1.0, tolerance parameter set to 0.001, epsilon
for loss function set to 1.0E-12, and the kernel type being
Poly Kernel. Using CVParameterSelection, adjusting the
RBF kernel and optimizing the C parameter allowed the
model to effectively handle complex decision boundaries,
while adjusting gamma balanced over and under fitting.

e RFT: With the RFT model, all evaluation metrics in-
creased roughly 5% as well. The parameters included: 10
folds for cross validation, 1 random seed, and 100 trees.
Tuning the number of tress and maximum depth improved
classification and prevented over and under fitting.

o 1Bk (K-NN): 1Bk benefited from hyperparameter tuning
more that SMO and RFT, having a roughly 9% increase

Comparison of Hyper Parameter Tuning in RFT
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Fig. 6. RFT Hyper Parameter Tuning Comparison
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Fig. 7. K-NN Hyper Parameter Tuning Comparison

across all evaluation metrics. The parameters included:
using 10-folds for cross validation and 1- nearest neigh-
bor. Optimizing the number of neighbors to classify
emotions reduces sensitivity and produces better stability
and generalization for data.

D. Confusion Matrix Analysis

The confusion matrices (Figures 5-8) offer additional in-
sights into each model’s strengths and common misclassifica-
tions across emotions:

SVM: The confusion matrix for SVM shows high accu-
racy in classifying anger, neutrality, and sadness, with
minimal misclassifications. However, anxiety/fear was
frequently misclassified as either sadness or neutrality,
reflecting the acoustic similarities among these emotions.
This pattern aligns with SVM’s strong ability to handle
well-separated emotional categories.

Random Forest: The Random Forest confusion matrix
underscores its effectiveness in classifying happiness and
neutrality. However, emotions such as anxiety/fear and
disgust were more prone to misclassification, indicating
that while Random Forest effectively captures general
patterns, it may lack the sensitivity required to distinguish
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finer nuances in similar emotional categories.

o k-NN: The confusion matrix for k-NN reveals its strength
in classifying neutrality and sadness, but it shows higher
rates of misclassification for emotions with less distinct
acoustic characteristics, such as anxiety/fear and disgust.
This suggests that k-NN’s reliance on localized proximity
in feature space does not adequately handle emotions with
overlapping or subtle feature distributions.

E. Comparative Analysis and Discussion

While deep learning models such as those by Pham et
al. [7] (76% CNN) and Idoko [6] (61% CNN, 56% LSTM)
have demonstrated competitive performance in SER tasks,
our study finds that traditional machine learning models,
particularly SVM (90.65%) and Random Forest (87.48%), can
achieve superior accuracy with lower computational overhead.
The performance gap may be attributed to differences in
feature engineering and dataset choice, as our approach lever-
ages handcrafted acoustic features optimized for classification.
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Fig. 10. K-NN Confusion Matrix

These findings suggest that traditional ML remains a viable
alternative for SER, especially in real-time and resource-
constrained settings.

Comparing the models reveals that SVM’s capability to
process high-dimensional data made it particularly effective
for SER tasks requiring recognition of subtle emotional dis-
tinctions. Although hyperparameter tuning was applied across
all models to optimize performance, accurately classifying
emotions with overlapping acoustic features—such as anxi-
ety/fear and disgust—remained a challenge for all classifiers.

The confusion matrices (Figures 8—10) highlight specific
trends in misclassification, offering insights into areas for
potential improvement. SVM and Random Forest consistently
performed well in classifying anger, neutrality, and sadness,
suggesting that these emotions possess distinct acoustic mark-
ers that these models could effectively leverage. However,
anxiety/fear was frequently misclassified as sadness or neu-
trality, likely due to overlapping spectral properties in pitch
and energy distribution. Similarly, Random Forest and k-
NN struggled with disgust, reinforcing the notion that some
emotions share subtle acoustic similarities that challenge even
well-optimized models.

These misclassification trends indicate that further refine-
ments in feature engineering—such as incorporating higher-
order statistical descriptors, prosodic features, or frequency
modulation patterns—could enhance accuracy

V. CONCLUSION

This study successfully demonstrated the effectiveness of
traditional machine learning models, specifically the Sup-
port Vector Machine (SVM), Random Forest, and k-Nearest
Neigh(k-NN), for classifying emotions in speech. By carefully
selecting and tuning features such as pitch, RMS energy, and
MEFCC from the Berlin Emotional Speech Database (EmoDB),
the SVM model achieved a classification accuracy of 90.65%.
This result highlights that, with optimized feature engineering
and preprocessing, traditional models can yield high accuracy
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in speech emotion recognition (SER), even in the face of
overlapping emotional characteristics. Each model performed
well in distinguishing distinct emotions like anger and neu-
trality, though, challenges persisted in classifying emotions
with similar acoustic profiles, such as anxiety and fear. The
study illustrates that traditional machine learning techniques,
with appropriate feature selection and tuning, provide an
efficient and interpretable approach to SER. These models
are computationally lighter than deep learning alternatives,
making them suitable for real-time applications where resource
constraints are a consideration. For example, virtual assistants
and call centers can use this to improve customer interactions
by detecting such emotions to dynamically adjust responses
based on their emotions. In education, these models can be
used for teachers to keep track of students emotional responses
and engagement during learning to adapt their teaching for the
students. Additionally, this can be used for law or criminal
investigations to analyze interrogations, emotions during trials
and emergency calls to detect certain signals in speech such
as deception or anxiety in speech. The practical implications
suggest that lightweight machine learning models can enhance
HCI in real world settings where emotion detection is useful.

VI. FUTURE WORK

This study achieved strong results with traditional learning
models; however, there are several avenues for future research.
First, utilizing an uncontrolled dataset would allow for testing
models with real conversations to classify emotions more
effectively. Additionally, exploring deep learning techniques,
such as convolution neural networks (CNNs) or recurrent
neural networks (RNNs), could lead to further improvements
in emotion classification, especially for subtle or overlapping
emotions like anxiety and fear. Another essential area for
exploration is the real-time implementation and testing of
these models in models in embedded devices and in real-world
applications such as healthcare or virtual assistants, to assess
their practical utility.
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