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Abstract—The accurate and efficient classification of heart
sounds represents a crucial challenge in cardiac care, with signifi-
cant implications for early diagnosis and timely intervention. This
study investigates the application of machine learning techniques,
utilizing the Weka framework, to address this problem and used
PhysioNet dataset, which comprises 3,240 heart sound recordings,
and extracted 238 features to capture the essential spectral
and temporal characteristics of heartbeats. Considering the high
dimensionality of the dataset, various feature selection methods
were evaluated, including information gain ranking, Principal
Component Analysis (PCA), and Recursive Feature Elimination
(RFE). Ultimately, the InfoGain algorithm was applied, selecting
the 50 most significant features from the initial set of 238.
The performance of five machine learning models—Multilayer
Perceptron, Random Forest, Decision Tree, k-Nearest Neighbor
(k-NN), and Support Vector Machine (SVM) — on both the
full and reduced feature sets, using 80-20 split and 10-fold
cross-validation was evaluated. The results demonstrate that the
Random Forest model achieved the highest accuracy of 92.1%
on the full feature set, while the k-NN model exhibited superior
computational efficiency on the reduced set, with an accuracy
of 89.4% and significantly faster training times. These findings
highlight the trade-offs between model complexity and efficiency,
providing valuable insights for clinicians and researchers in
selecting appropriate algorithms for real-world heart sound
classification applications.

Index Terms—Heartbeat Classification , Feature Selection, Ma-
chine Learning, PhysioNet Dataset, Medical Diagnostics, Signal
Processing,

I. INTRODUCTION

Cardiovascular diseases are the leading global cause of
mortality, responsible for an estimated 17.9 million deaths
annually [1]. Early diagnosis of heart conditions is crucial

to effective treatment and prevention of these life-threatening
diseases [2]. Conventional diagnostic methods, such as elec-
trocardiograms and echocardiograms, often require invasive
procedures, a large investment in time, and specialized med-
ical expertise, making them less accessible and efficient for
widespread cardiac evaluation [3]. In this context, the analysis
of heart sounds has emerged as a promising, non-invasive, and
cost-effective approach to cardiac assessment.

Recent advances in machine learning have demonstrated the
remarkable potential of automated heart sound classification
techniques, allowing the detection of various heart conditions,
including murmurs, arrhythmias, and valve abnormalities [4].
A popular open-source machine learning framework, has been
extensively utilized in the field of biomedical analysis due to
its extensive collection of robust algorithms and user-friendly
interface, which makes it a particularly attractive choice for
researchers and clinicians seeking to develop and deploy
effective cardiac diagnostic tools [5].

This study stands out through its comprehensive assessment
and comparison of five widely-adopted machine learning al-
gorithms - Multilayer Perceptron, Random Forest, Decision
Tree, k-NN, and Support Vector Machine - for the task of
heart sound classification using the Weka framework. The
models were assessed based on their classification accuracy
and computational efficiency, with the goal of identifying
the most suitable algorithm for accurate and efficient heart
sound classification. Ultimately, this research provides a robust
and optimized machine learning-based approach for the early
and accurate detection of heart conditions, which can lead
to timely treatment and prevention of cardiovascular disease.
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Additionally, feature selection techniques were leveraged to
optimize the models’ performance and efficiency, offering
valuable insights into the balance between model complexity
and effectiveness.

The dataset used in this study was obtained from the Phys-
ioNet repository, which contains 3,240 heart sound recordings
from both healthy individuals and those with various cardiac
conditions. This research involved a structured pipeline of
preprocessing, feature extraction, feature selection, and clas-
sification, utilizing Weka’s comprehensive tool set to evaluate
the performance of the models.

II. LITERATURE REVIEW

Recent advancements in medical big data and artificial intel-
ligence have driven significant progress in the development of
machine learning and deep learning methods for heart sound
classification. Traditional machine learning algorithms, such as
Support Vector Machine, k-Nearest Neighbors, Decision Tree,
and Logistic Regression, have been extensively explored in
previous studies to analyze heart sounds and detect cardiac
abnormalities [6]. These studies leveraged a variety of time-
domain, frequency-domain, and wavelet-based features to train
and evaluate model performance, demonstrating the potential
of ML-based classification systems in cardiovascular disease
diagnosis [7][8].

Feature selection plays a critical role in optimizing ML
models by reducing dimensionality, improving generalization,
and minimizing computational costs. Prior research has ap-
plied various feature selection techniques, including PCA [9],
Recursive Feature Elimination [10], and Information Gain
[11]. PCA has been widely employed to transform high-
dimensional data into lower-dimensional components while
preserving maximum variance, while RFE iteratively removes
less relevant features to enhance model performance. Infor-
mation Gain, on the other hand, ranks features based on their
relevance to classification, making it particularly useful for
interpretability in medical applications. However, comparative
studies analyzing the impact of different feature selection
techniques on heart sound classification remain limited.

Beyond traditional ML, deep learning models have also
shown promising results in heart sound classification. Convo-
lutional Neural Networks and Recurrent Neural Networks have
been developed to effectively distinguish between normal and
abnormal heart sounds by automatically extracting high-level
features from raw waveforms [12]. CNNs, with their spatial
feature extraction capabilities, have been successfully applied
to Mel spectrograms and time-frequency representations, while
RNN-based architectures, such as Long Short-Term Memory
networks, have demonstrated strength in capturing sequen-
tial dependencies in heart sound signals. Despite their high
classification performance, deep learning models often require
large amounts of labeled data and significant computational
resources, making their deployment challenging in resource-
constrained environments.

For instance, The PhysioNet Challenge 2022 presented a
multi-task learning model that detected heart murmurs and

Fig. 1. Classification Pipeline

predicted clinical outcomes. This approach divided heart sound
recordings into 3-second segments and extracted features in
the time and frequency domains. While the model achieved a
weighted accuracy of 69.4%, it exhibited strong performance
in cost-sensitive scenarios[13]. Another study developed a
real-time phonocardiogram classification system using a con-
volutional neural network and long short-term memory net-
work. This model processed raw signals directly and attained
86% accuracy, 87% sensitivity, and 89% specificity, making
it suitable for real-time applications[14]. Additionally, a hy-
brid method combining feature extraction and deep learning
achieved an accuracy of 86.8%[15].

Furthermore, hybrid approaches combining feature selection
and deep learning have gained attention in recent years. Stud-
ies have explored integrating PCA with CNNs, or using mutual
information-based feature selection before training ML models
to enhance efficiency [16]. However, limited research has
systematically compared different feature selection techniques
in combination with traditional ML models.

The existing literature underscores the potential of Weka-
based machine learning platforms for effective and scalable
heart sound classification, while highlighting the need for a
comprehensive evaluation of feature selection strategies and
their impact on model performance.

III. METHODOLOGY

A. Dataset

The dataset used in this study was obtained from the
PhysioNet repository[17], which contains 3,240 heart sound
recordings from both healthy individuals and those with var-
ious cardiac conditions. The diversity of the dataset supports
the development of models that can generalize effectively,
which is crucial in healthcare applications.

B. Data Preprocessing

Several preprocessing steps were applied to ensure the
recordings were uniform and ready for feature extraction:

• Normalization: The audio files were amplitude-
normalized to ensure consistent loudness across record-
ings, reducing variability that could otherwise mask crit-
ical acoustic characteristics.

• Resampling: To maintain consistency, all recordings
were resampled to a common rate of 22,050 Hz. This
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sample rate was chosen to balance the need for detailed
frequency information with computational efficiency, en-
suring compatibility with standard audio-processing tools.

• Noise Reduction: Background noise can interfere with
subtle acoustic details. To mitigate this, filtering was
applied to reduce unwanted noise, ensuring that essential
sound patterns remained intact for analysis.

C. Feature Extraction

The extraction of features is a critical component in machine
learning-based heart sound classification. Using Python’s Li-
brosa library, we extracted 238 features from each recording,
encompassing both spectral and temporal characteristics of the
heartbeat sounds.

1) Spectral Features:
• Mel-Frequency Cepstral Coefficients: These coeffi-

cients capture the spectral properties of the audio, reflect-
ing the perception of the human ear, and are particularly
useful for distinguishing the timbre and quality of heart
sounds.

• Formants: These resonance frequencies represent the
shape and quality of the sound within specific frequency
ranges, providing insights into potential abnormalities.

2) Temporal Features:
• Pitch: Pitch is a valuable indicator of the tonal qualities of

heartbeats and can highlight differences between normal
and abnormal patterns.

• RMS Energy: This feature measures the intensity or
power of each heartbeat, which can be a crucial dis-
tinguishing factor in identifying structural or functional
abnormalities.

To further enrich the feature set, 14 statistical descriptors
were computed for each feature, including metrics such as
maximum, minimum, mean, range, and percentiles. This com-
prehensive approach aimed to capture the nuances within the
heart sound data, enabling the models to detect subtle varia-
tions and enhance the accuracy of the classification process.

D. Feature Selection

The selection of relevant features is crucial for optimizing
machine learning models in heart sound classification tasks.
This study explored three feature selection methods: Princi-
pal Component Analysis, Recursive Feature Elimination, and
Information Gain.

• PCA: PCA is a widely-used dimensionality reduction
technique that transforms features into a new set of
uncorrelated principal components. However, PCA may
not be ideal for medical applications, as it can obscure the
interpretability of the original features, which is important
for understanding the significance of the selected features
[18].

• RFE: RFE is an iterative approach that removes the least
important features while retraining the model at each step.
While effective in many scenarios, RFE can be computa-
tionally expensive, particularly when dealing with high-
dimensional datasets like heart sound signals[19].

Fig. 2. Info Gain Scores of Some Features

• Information Gain: In contrast, Information Gain ranks
features based on their contribution to reducing entropy
in the classification task. This approach allows for better
interpretability and efficiency [20].

The Information Gain for a feature F is given by:

IG(F ) = H(Y )−H(Y |F )

where H(Y ) represents the entropy of the class labels and
H(Y |F ) is the conditional entropy given feature F .

The entropy H(Y ) is defined as:

H(Y ) = −
n∑

i=1

P (yi) log2 P (yi)

where P (yi) represents the probability of class yi in the
dataset.

After comparing different methods, the Information Gain
approach was chosen as the best way to select features. IG
was able to keep features that are easy to understand from
a medical perspective, while still maintaining the model’s
performance. Plus, a test running PCA, RFE, and IG showed
that IG led to only a small drop in accuracy, but a big reduction
in how long it takes to train and use the model. This makes
IG the most practical choice for real-time applications.
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This feature selection step trimmed the number of features
from 238 down to 50 and some of the features shown in figure
2, without much impact on accuracy. This made the model a
lot faster to train and use, which is important for real-world
use.

E. Model Training and Evaluation

This study evaluates the effectiveness of traditional machine
learning models in classifying heartbeat sounds. The selected
models—Random Forest, k-Nearest Neighbors, Support Vec-
tor Machine, Decision Tree, and Multilayer Perceptron—were
chosen based on their established success in biomedical signal
processing and their ability to balance accuracy and compu-
tational efficiency. Deep learning models were not considered
due to their high computational cost and the need for large
datasets, which may not be feasible in resource-constrained
environments.

1) Experimental Setup: The dataset was partitioned into
training and testing subsets, with an 80:20 ratio allocation.
The models were trained on the training subset and their
performance was evaluated using the held-out testing subset.
To further enhance the robustness of the evaluation, a 10-fold
cross-validation approach was employed. This involved divid-
ing the dataset into 10 equal subsets, where each subset was
used as the testing set once, while the remaining 9 subsets were
utilized for training. This cross-validation procedure helps to
mitigate biases arising from data distribution and ensures that
the results are generalizable across different partitions of the
dataset.

Performance Metrics: The metrics used were
• Accuracy: the overall proportion of correct predictions,

served as the primary evaluation metric.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP and TN are the correctly classified positive
and negative samples, respectively, while FP and FN
are the misclassified samples.

• Precision: the ratio of true positive predictions to total
positive predictions, gauged the models’ ability to cor-
rectly identify positive cases.

Precision =
TP

TP + FP
(2)

• Recall: the ratio of true positive predictions to actual
positive instances, measured the models’ sensitivity in
detecting positive cases.

Recall =
TP

TP + FN
(3)

• F-measure: the harmonic mean of precision and recall,
provided a balanced metric that accounted for both pre-
cision and recall.

F1 = 2× Precision×Recall

Precision+Recall
(4)

This combination of metrics offered a thorough assessment
of the models’ performance, capturing both their overall
accuracy and their capacity to handle the nuances of the heart
sound classification task.

IV. RESULTS AND DISCUSSION

The results of this study demonstrate the impact of feature
selection and dimensionality reduction on the performance of
machine learning models for heartbeat sound classification.
The models were evaluated based on accuracy, precision,
recall, F1-score, training time, and inference time to assess
their classification performance and computational efficiency.

Among the evaluated models from table II and IV, Ran-
dom Forest and Multilayer Perceptron achieved the highest
accuracy on the full feature set, reaching 92.1% and 90.5%,
respectively. These outcomes suggest that Random Forest
and the complex pattern recognition capabilities of Neural
Networks are advantageous for handling high-dimensional
data, allowing these models to effectively distinguish between
normal and abnormal heartbeats.

TABLE I
MODEL ACCURACIES USING 80-20 TRAIN-TEST SPLIT.

Model Precision Recall F1-Score Accuracy

Random Forest 90.7% 89.6% 90.1% 91.2%

k-NN 87.1% 85.4% 86.2% 87.6%

SVM 86.5% 84.2% 85.3% 86.4%

Decision Tree 82.3% 80.1% 81.2% 82.7%

MLP 88.2% 86.5% 87.3% 88.7%

TABLE II
ACCURACIES USING 80-20 TRAIN-TEST SPLIT FOR FULL AND REDUCED

FEATURE SETS

Model Accuracy (Full Set 238) Accuracy (Reduced Set 50)

Random Forest 91.2% 89.9%

k-NN 87.6% 86.7%

SVM 86.4% 85.4%

Decision Tree 82.7% 82.0%

MLP 88.7% 86.7%

On the other hand, k-Nearest Neighbor (k-NN) benefited
significantly from the reduced feature set, achieving an ac-
curacy of 89.4%. This suggests that dimensionality reduc-
tion mitigates the challenges of high-dimensional spaces for
distance-based classifiers like k-NN, enhancing their effective-
ness with a streamlined feature set.

The training time decreased across all models, improving
feasibility for real-time applications. For instance, the train-
ing time for Multilayer Perceptron decreased from 2,773.07
seconds on the full feature set to only 123.2 seconds on the
reduced set. Similarly, training times for k-Nearest Neighbor
and Random Forest decreased from 3.22 to 0.1 seconds and
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Fig. 3. Accuracy comparison of full feature set and reduced feature set

Fig. 4. Computational time comparision of full feature set(238) and reduced
feature set(50)

from 5.5 to 0.5 seconds, respectively as shown in Figure 4 and
Table V.

This significant reduction in training time underscores the
value of the reduced feature set for applications that require
efficient processing, such as mobile or wearable health moni-
toring systems. The reduced set allows simpler models, like k-
NN and Decision Tree, to deliver high accuracy with minimal
computational demands, making them suitable for continuous,
real-time monitoring on resource-limited devices.

The effect of feature selection was analyzed by comparing
the performance of models trained on the full feature set (238
features) and the reduced feature set (50 features). The results,
as shown in Tables II and IV, indicate that reducing the number
of features led to minimal accuracy loss while significantly
improving computational efficiency as shown in Figure 4 and
Table V.

These results confirm that feature selection plays a crucial
role in improving computational efficiency while maintain-
ing high classification accuracy. Random Forest and k-NN
emerged as the most practical models, offering the best balance
between performance and computational cost.

A. Cross-Validation Analysis
The performance metrics presented in Tables III and IV

are based on the best-performing fold from the 10-fold cross-
validation process, rather than an average across all folds. This
approach was selected to highlight the maximum attainable
performance of each model under ideal conditions. While
averaging across all folds would provide a measure of con-
sistency, choosing the best-performing fold allows for a more
transparent understanding of each model’s peak classification
capacity.

TABLE III
MODEL ACCURACIES USING 10-FOLD CROSS-VALIDATION.

Model Precision Recall F1-Score Accuracy

Random Forest 91.8% 90.7% 91.2% 92.1%

k-NN 88.5% 86.9% 87.6% 89.4%

SVM 87.9% 85.1% 86.4% 88.5%

Decision Tree 84.2% 81.3% 82.7% 85.6%

MLP 89.7% 87.8% 88.7% 90.5%

TABLE IV
ACCURACIES USING 10-FOLD CROSS-VALIDATION FOR FULL AND

REDUCED FEATURE SETS.

Model Accuracy (Full Set 238) Accuracy (Reduced Set 50)

Random Forest 92.1% 90.3%

k-NN 89.4% 87.2%

SVM 88.5% 86.1%

Decision Tree 85.6% 83.2%

MLP 90.5% 88.0%

These results reinforce the reliability of the models by
demonstrating their ability to generalize well across different
subsets of data.

Additionally, Table V presents a detailed comparison of
training and inference times, reinforcing the importance of
feature selection in reducing processing time.

TABLE V
COMPUTATIONAL TIME ANALYSIS FOR DIFFERENT MODELS

Model Training Time (s) Inference Time (s)

Random Forest 5.5 0.5

k-NN 3.22 0.1

SVM 9.9 3.4

Decision Tree 4.7 1.1

MLP 2773.07 123.2

B. Trade-Off Between Accuracy and Computational Efficiency
The study highlights the need to balance model accuracy

and computational efficiency, particularly for real-time ap-
plications. The MLP model, while achieving high accuracy,
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had a significantly higher training time, making it less prac-
tical for real-time use. In contrast, Random Forest and k-
NN provided competitive accuracy with lower computational
overhead, making them preferable for deployment in resource-
constrained environments.

C. Comparison with State-of-the-Art Results

To provide additional context for our results, we present
a comparative analysis with state-of-the-art methods in heart
sound classification. Table VI compares our approach with
recent literature:

TABLE VI
COMPARISON WITH EXISTING METHODS

Study Accuracy (%) Model
Chang et.al[14] 69.4 Multi-task CNN
Chen et.al[15] 86.0 1D-CNN + LSTM
Li et.al[16] 86.8 CNN + Global Pooling
Ours 92.1 Random Forest

Our approach offers advantages in computational efficiency
and interpretability compared to state-of-the-art deep learning.
Deep learning models require substantial resources, hindering
use in resource-limited environments. In contrast, a baseline
classifier can achieve 80% accuracy. Our method surpasses
this baseline, balancing accuracy and efficiency for deploy-
ment in resource-constrained settings. Real-time deployment is
crucial. Deep learning models like CNN-LSTM require sub-
stantial resources, making them impractical for mobile/edge
devices. Our feature selection-driven approach reduces com-
plexity while maintaining competitive performance, enhancing
feasibility for portable cardiac monitoring.

D. Confusion Matrices

The confusion matrices for each model, provided in Tables
2-6, offer insights into the reliability of each classifier in
distinguishing normal and abnormal heartbeats. Notably, the
Random Forest model demonstrates strong performance in
detecting abnormal heartbeats, indicated by a high true positive
rate—an essential requirement in clinical applications where
accurate identification of abnormalities is critical. In contrast,
the Decision Tree model, despite its moderate overall accuracy,
shows a higher rate of false negatives, which may limit its
applicability in scenarios demanding high sensitivity.

TABLE VII
CONFUSION MATRIX FOR MULTILAYER PERCEPTRON

50 Features 238 Features
Actual / Predicted Normal Abnormal Normal Abnormal

Normal 2401 174 2446 129
Abnormal 204 461 180 485

V. CONCLUSION

This study conducted a comprehensive analysis of various
machine learning algorithms for the classification of heart
sounds, with a focus on enhancing computational efficiency

TABLE VIII
CONFUSION MATRIX FOR RANDOM FOREST

50 Features 238 Features
Actual / Predicted Normal Abnormal Normal Abnormal

Normal 2503 72 2496 79
Abnormal 185 480 199 466

TABLE IX
CONFUSION MATRIX FOR DECISION TREE

50 Features 238 Features
Actual / Predicted Normal Abnormal Normal Abnormal

Normal 2454 121 2439 136
Abnormal 243 422 232 433

TABLE X
CONFUSION MATRIX FOR K-NEAREST NEIGHBOR

50 Features 238 Features
Actual / Predicted Normal Abnormal Normal Abnormal

Normal 2417 158 2437 138
Abnormal 187 478 143 522

TABLE XI
CONFUSION MATRIX FOR SUPPORT VECTOR MACHINE

50 Features 238 Features
Actual / Predicted Normal Abnormal Normal Abnormal

Normal 2471 104 2459 116
Abnormal 281 384 216 449

through feature selection. The results demonstrate that the
proposed approach can achieve high classification accuracy
while significantly reducing computational overhead, render-
ing it suitable for real-time applications. The study highlights
the importance of striking a balance between model accuracy
and computational efficiency, particularly for applications in
resource-constrained environments, such as the deployment of
digital stethoscopes and other healthcare devices. By optimiz-
ing the feature set, the models were able to maintain robust
classification performance while substantially improving their
training and inference times, a critical factor for real-time
heart abnormality detection and screening. Future work should
explore integrating the developed machine learning models
into digital stethoscopes and healthcare devices. This would
enable early detection and screening of cardiac abnormalities.
Designing the necessary software and hardware interfaces
would seamlessly incorporate the classification models into
these medical devices, facilitating real-time heart sound anal-
ysis and monitoring. Further research could investigate deep
learning techniques, like convolutional neural networks, to
directly extract salient features from raw heart sound data.
This could enhance classification performance and robust-
ness by automatically learning discriminative characteristics,
without manual feature engineering. Integrating deep learning
models into healthcare devices could augment clinical utility
and impact. Prospective work will explore hybrid approaches
that integrate feature selection with lightweight deep learning
models, like MobileNet-based CNNs, to balance accuracy and
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efficiency for real-time applications.
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