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Abstract

An important issue for concurrent garbage
collection in virtual machines (VM) is to identify which
garbage collector (GC) to use during the collection
process. For instance, Java program execution times
differ greatly based on the employed GC. It has not
been possible to identify the optimal GC algorithms
for a specific program before exhaustively profiling
the execution times for all available GC algorithms.
In this paper, we present an adaptive and concurrent
garbage collection (ACGC) technique that can predict
the optimal GC algorithm for a program without
going through all the GC algorithms. We implement
this technique in the Java virtual machine and test
it using standard benchmark suites. ACGC learns
the algorithms’ usage pattern from different training
program features and generates a model for future
programs. Feature generation and selection are two
important steps of our technique, which creates different
attributes to use in the learning step. Our experimental
evaluation shows improvement in selecting the best GC.
Additionally, our approach is helpful in finding better
heap size settings for improved program execution.

1. Introduction

Memory allocation and program execution are two
significant and related aspects in the overall operating
systems performance. This relationship is defined using
the concept of a working set of an application, which
refers to a set of currently running objects of that
particular application [1]. The working set size is
defined by the amount of memory required to store
those objects. When the application’s working set size
exceeds available memory, throughput becomes limited
by waiting for memory to be paged in or out. Hence, the
program performance can be improved by increasing the
memory size, which in turn reduces the number of page
faults. However, the application stops paging when its
working set fits into main memory. In that scenario,
performance might not improve with the increase in
memory capacity. To overcome such situations, garbage
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collection is a technique that reclaims dynamically
allocated memory locations, helps developers from
freeing the memory explicitly in the program.

One of the prime features of managed runtime
environment is automatic memory management through
garbage collection. In managed runtime environment
such as Java Virtual Machines (JVM) and the Common
Language Runtime (CLR), the total execution time of
an application depends on both application and VM
execution [2]. The most significant time-consuming
tasks performed by the VM is reclaiming the memory
usage and garbage collection. In this paper, we focus
on time reduction by GC which eventually reduces
execution time of an application.

GC has a dominating effect on the net execution
time of an application for two reasons. Firstly, a
significant portion of the net execution time is spent
for garbage collection. Experimental results show
that the mean proportion of execution time spent in
GC is 12.2% for 1566 experimental configurations [2].
Secondly, an indirect impact is caused by the method
in which GC algorithm rearranges heap-allocated data
after collection [3]]. Therefore, it affects latter program
execution time due to changes in spatial locality of data.

There exists different garbage collection techniques
that efficiently manage memory allocation and
de-allocation for applications with varying resource
requirements.  Additionally, it is well-known that
different GCs perform better for different programs.
Hence, selecting the best GC algorithm for every
program is a challenging task that requires either
exhaustive profiling of all the applications on all
available GCs or learning from program specific
historical GC usage pattern. In this paper, we show
wasted CPU utilization in the current virtual machine.
Additionally, we present a new program specific
to adaptive and concurrent GC (ACGC) selection
technique that considerably reduces GC CPU utilization
(percentage of CPU time spent in GC) and improves
scalability and GC performance.

This paper makes the following contributions:

* We introduce an adaptive and concurrent garbage
collection scheme that can be used on top
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of existing virtual machine to achieve efficient
execution of programs.

e We wuse non-negative matrix factorization
(NNMF) for feature transformation that improves
classification accuracy in optimal GC selection.

e We analyze the effects of heap size setting
(initial, minimum, and maximum) for different
benchmark data to exploit the garbage collection
behavior of different GCs.

e We use four different features from benchmark
programs to analyze the optimal collection.

e Our experimental results demonstrate promising
improvement over traditional features used for
garbage collection analysis.

The rest of the paper is organized as follows:
Section [2| presents a comprehensive literature review
of application specific garbage collection schemes.
Section[3|presents background and problem statement of
the proposed approach. Section ] describes the solution
using pattern learning algorithm from program usage
behavior. Section [5] and [f] presents the experimantal
settings and the empirical evaluation of our technique
respectively. Finally, Section [7]concludes our work.

2. Background

The load balancing mechanisms of different single
and multi-threaded GC have been presented in the
literature. A novel JVM GC approach is proposed in
[4] where efficient GC performance, reduction of GC’s
CPU usage, and scalability were claimed after analyzing
Google data-center jobs and DaCapo benchmark suite.

Data Structure Aware (DSA) interface enabled GC
has been proposed by Cohen et al. [5]. GC gets
information through the DSA to handle such data
structures which are often used to hold much of
the program data. The authors claimed that the
proposed method reduces the overall program execution
time. Additionally, GC’s performance is enhanced by
utilizing the knowledge of the most frequently used data
structures such as arrays and linked lists. However,
the DSA interface is not scalable to all programs and
also not capable to work on major data structure with
significant amount of data.

In the presence of automatic memory management,
the relationship has been found between allocated
memory and GC, indicating application performance.
Larger heap sized memory reduces the frequency of
GC operation. But once the heap size exceeds the
available physical memory, parts of the heap is paged
to the backing store. Zhang et al. [I] proposed a
scheme for adaptively identifying the optimal heap size
for a program while it is running within a Java virtual

machine. However, the efficiency of GC performance
does not fully depend on optimal heap size.

Andreasson et al. applied ML methods to enhance
the GCs for more adaptive solutions [6]. They used
reinforcement learning, in which an agent interacts with
the environment and learns by trial and error rather
than from direct training examples. This work analyzed
an adaptive decision process that makes decisions
regarding which GC technique should be invoked and
how it should be applied. The report has investigated
how to design and implement a learning decision
process for a more dynamic garbage collection in a
modern JVM. The result of their analysis is that the
use of a reinforcement learning system is particularly
useful if an application has a complex dynamic memory
allocation behavior. For the above reason, the dynamic
garbage collection technique is proposed at first place in
this research work.

Blackburn et al. [7/] presented design,
implementation, and evaluation of a memory
management toolkit (MMTk) for java that is used
to develop the java GC. Most of the existing GCs are
monolithic and do not share reused components whereas
MMTk use these two features. This paper is a case
study that shows flexibility can actually improve rather
than degrade performance. Here they showed how
MMTk combines good software engineering design
with excellent performance by comparing MMTk code
and execution times in Jikes RVM, a Java-in-Java
Virtual Machine, with monolithic Java and C collector
implementations.

Bruno et al. [8]] presented a comprehensive study on
various GC algorithms that are utilized in Big Data [9,
10] and machine learning platforms [11}|12]. They
claimed that by analyzing memory profiling, rate of
successful collection, and maintaining a balanced heap
size, classic GC algorithms can be improved especially
the scalability issue. The study mainly focuses on
the improvement of GC rather than identifying suitable
program specific GC.

In Table |1} we provide a summary of advantages
and drawbacks of the prior works. Unlike previous
approaches, our paper presents a novel method that
uses both matrix factorization and machine learning
to efficiently select an optimum GC algorithm for a
program that has not been seen before by the profiler.

3. Problem Statement

We consider the best GC selection for a particular
program as an optimization problem. In our problem
setting, we assume that the system has C =
{c1,¢2,...,¢n} GCs where ¢; refers to i-th GC.
Additionally, we assume that the system will execute
P = {p1,p2,...,pm} programs where p; denotes j-th
program. Without the loss of generality, let us assume
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Table 1: A summary of the studied works

Drawbacks

Supported limited data structure.
Limited scalability.

5] Performance enhancement. | Limited compatibility.

No discussion on CPU usage.
No suggestions of GC.

Depends on other params.

Not scalable.

Only compatible with Java

No prediction was provided for

Works | Advantages

Identified optimal heap

1 size foraj
java program.

{6l Applied ML to enhance program specific appropriate GC.
the GC techniques. Discussed only the improvement
in the decision process of GCs.
No suggestions of GC.
o . Only improves the architecture
ji3) | Offeredaportable toolkit | o1 olithic java, and C GC.

to develop GC.

No suggestions of GC.
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Figure 1: Process diagram of adaptive and
concurrent GC (ACGC).

that net execution time of an application depends on
the type of a program and individual GC. Note that,
net execution time consists of both execution time and
garbage collection time. Considering execution time
(&(pj,ci)) and garbage collection time (G(pj,c;)) as
functions of program and garbage collection, we present
our optimization function in Equation [I] that is solved
using learning algorithms (Section [3)).

argmin [£(p;, ;) + 9 (ps, 1)) %

arg min G (pj, ¢;) @)

As execution time primarily depends on the processor
configuration, we specifically focus on the garbage
collection time. Hence, we can rewrite Equation E]
using only garbage collection function in Equation
We assume that the execution time remains same for a
particular program.

We now present a toy example to make a simple
and concrete scenario of the above problem statement.
Suppose we know (after experimentation) that a
program P executes in the shortest time using GC
algorithm gc_hello, and program () executes in the

shortest time using GC algorithm gc_world. We
want to know which GC algorithm works best in
terms of shorter execution time for a new program R
without profiling all the available GC techniques in the
system. Our goal is to avoid the profiling complexity by
introducing adaptive and concurrent selection method.

4. Proposed Approach

In this section, we present our solution approach of
the above mentioned problem statement using Figure|[T]
Firstly, we measure execution time for a particular
program by profiling all the available GCs. At this stage,
all the programs make up the training dataset. The GC
that achieves minimum execution time is set as default
label for that program. In the next step, each program is
run using four different functions that extract features: 1)
static metrics such as depth of inheritance tree (DIT), ii)
dynamic metrics such as number of allocated objects,
iii) statistical metrics such as entropy, and iv) virtual
machine (VM) metrics such as heap size. In the third
step, we transform the feature space into latent space
using NNMF to ensure similarity computation in the
later stages by Equation 3]

: 1 In1))12
argxlrg,llrl>0§||X—XY 152 3)

where feature matrix X is transformed into a |
dimensional feature space with two components X' and
Y such that the approximation in Equationholds.

X ~ X'y! 4)

We also build a learning model using original feature
space to adapt the two approaches for GC selection.

In the first approach (ACGC+cosine), we compute
similarity score between test and training program
features. The GC algorithm for the test program is set as
default label by taking majority vote from the similarity
scores. The approach is described in Algorithm|[I]

In the second approach (ACGC+learners), we
use a learning function J, that maps the test program
to a optimum GC algorithm. Let X denote the
feature set of test program (benchmark) instances
and let Y = {1,2,...,Q} be the finite set of
labels, which corresponds to unique garbage collection
algorithms.  Given a training program set 1T° =
{(@1, Y1), (22, Y2), . s (T, Vi) } (25 € XY €Y),
the goal of the learning system is to output a multi-class
classifier h : X — ) which optimizes some evaluation
metric. The approach is described in Algorithm 2}

5. Experimental Settings

Our purpose is to take several measurement aka
features from those. A learning algorithm takes
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Algorithm 1: ACGC using non-negative matrix
factorization as feature generation with cosine
similarity.

Algorithm 2: ACGC using non-negative matrix
factorization as feature generation with
learning algorithms.

Input: Training data 7 = {Xtrein Y},

Test data D = x'test

Set: Latent factors, [, Y5t = ()

Output: Optimal GC set Ytes?

Training:

1. Factorize X'*"*" into [ dimensional latent space
to get X! and Y components using Equation [3|

Test:

repeat

1. Randomly select a test program feature
xtast'

2. Compute similarity score oyes¢ from x
to all the features in X' using cosine
similarity as below
test __ Zic:l Tiiﬁtxjk

Tiy = Vo D, X

k=1%ik k=1 jk

3. Calculate majority vote to select Y ¢s?
using oy for ztest,

4. Set ytest — yt(ist U Ybest.

until D = ();

return )%t

test

a program execution specific behaviors and predicts
appropriate GC algorithm that performs the best for
a given heap size, without running all available GC
algorithms. To collect program execution behaviors,
we acquire information based on four categories: 1)
static, ii) dynamic, iii) virtual machine, and iv) statistical
metrics. These information are appended together for a
specific program that represent an initial feature space
to the learning algorithm. Later, we transform the initial
feature space into a latent space to ensure bias-free and
similarity based classification.

5.1. Feature Generation and Selection

5.1.1. Static Metrics Among several metrics suite
we adopt the Chidamber and Kemerer java metrics
(ckjm) suite for object-oriented programs [[14-16f]. This
includes the following eight measurements for each
class: depth of inheritance tree (DIT), weighted methods
per class (WMC), number of children (NOC), coupling
between object classes (CBO), response for a class
(RFC), lack of cohesion methods (LCOM), afferent
couplings (Ca), and number of public methods (NPM).
The depth of inheritance tree (DIT) is defined as the
maximum path length from the root. Figure 2 shows an
example where R is considered as the root class. In this
scenario, A and B has DIT score of 2. Similarly C' and
D has DIT score of 1.
Weighted methods per class (WMC) is the sum of the

Input: Training data 7 = {Xtrein Y},
Test data D = Xtest
Set: Latent factors, [, Y¢st = ()
Output: Optimal GC set Ve
Training:
1. Factorize X'*"*" into | dimensional latent space
to get X! and Y! components using Equation
Test:
repeat
1. Randomly select a test program feature
xtest.
2. Compute Y** using learning function.
3. Set ytest —_ ytest U Ybest.
until D = ();
return Y'est

Figure 2: A simple depiction of depth of inheritance
tree with five classes where R refers to the root and
others as inherited classes.

complexities of its methods. Complexity Among other
measures of complexity, cyclomatic complexity [17] or
arbitrarily assigned parameters can be used. The ckjm
program assigns a complexity value of 1 to each method,
and therefore the value of the WMC is equal to the
number of methods in a class.

Number of children (NOC) metric is defined as the
number of immediate subclasses subordinated under a
class within a class hierarchy. This also denotes the total
number of direct subclasses of current class.

The coupling between object classes (CBO) denotes
total number of outside classes which are referred to
from the current class. It measures how often a class
uses instances from other classes. To remove ambiguity
in computing CBO, multiple accesses to the same class
from a specific class is counted as single access.

Response for a class (RFC) denotes a set of methods
that can potentially be executed in response to a message
received by that class. In other words, RFC denotes the
total frequency of method execution for a single method
call. In practice, we want to find for each method of
the class, the methods that class will call, and repeat
this for each called method, calculating the transitive
closure [18]] of the method’s call graph. However, the
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process can be both expensive and inaccurate. In ckjm, a
rough approximation is computed by simply inspecting
method calls within the class’s method bodies.

LCOM measures the variation of instance variable
usage by different methods of a class. A lower LCOM
score means most of the methods use a similar set of
instance variables. Similarly, a higher score refers to
disjoint set of instance variables usage.

Finally, CA and NPM scores for a class measure how
many other classes use that specific class and the total
number of public methods in the class respectively.

5.1.2. Dynamic Metrics on Reference VM
We collect specific object demographics for each
benchmark program by using standard JVM. ideally,
those demographics reflect program allocation behavior.
These metrics are: number of allocated objects, average
of allocated objects’ space, and the total execution time
for a particular arrangement. In this case arrangement
denotes which GC algorithm is applied based on initial,
minimum, and maximum heap size (16M, 32M, 48M,
..., 5S12M). We collectively call the metrics as object
or arrays which are GC independent. For instance,
we do not consider nursery space as a member of the
object array. Nursery space is GC dependent feature as
it is only available when GenMS algorithm is called.
Overall, we analyze that GC dependent dynamic metrics
have minimal effect on performance.

Our goal is that one GC algorithm may outperform
other for different sized objects or arrays. We measure
GC performance based on program completion such
as execution time. Note that, the allocation and
collection of Large Object Space (LOS) are statistically
independent to the general purpose JVM heap.

The above metrics, with all absolute values, provide
an insight into the program’s GC behavior with different
heap size. In our next step, we consider the metrics
as different features which are also responsible for
improving program specific GC algorithm prediction
accuracy along with other metrics.

5.1.3. VM Metrics Heap size is one of the
influential metrics among the popular JVM metrics to
be considered for garbage collection. Heap is the
memory used by an application for creating and storing
objects. Heap is where objects created by an application
live. Run out of heap means application can no longer
create new objects and it leads to “OutOfMemory”
errors for running applications. This error can have
very serious effects on the JVM. For example, it can
stop the JVM, force a heap dump, pause the JVM,
or it can kill the JVM. Garbage Collection is the
mechanism that discards unused objects from the heap,
reclaiming the space for application use. On the other
hand, GC is a resource intensive process that leads

to poor performance of a program. So depending on
GC algorithm, programs have different performance
throughput [[19].

In this paper, we consider heap size and garbage
collection techniques as input metrics. In the case of
heap size, three different parameters are considered such
as initial heap size, minimum heap size and maximum
heap size. The mentioned parameters are specified
to JVM by command line flags as —Xms<Number>
(initial heap size), —Xmn<Number> (minimum heap
size) and -Xmx<Number> (maximum heap size),
respectively. In addition, five popular GC algorithms
are used as input parameters which are Parallel GC,
Concurrent Mark-Sweep GC(CMS), G1GC, Parallel
New GC and Serial GC. The command line flags for
using the mentioned GC’s are presented in Table 2]

Table 2: Command line flags for the five garbage
collection algorithms.

[ GC name | Command line flag \
Parallel GC XX:+UseParallelGC
Concurrent Mark Sweep | XX:+UseConcMarkSweepGC
G1 GC XX:+UseG1GC
ParNew XX:+UseParNewGC
Serial GC XX:+UseSerialGC

We consider 11 values: 16, 32, 48, 64, 96, 128, 160,
192, 224, 256, and 512 respectively for the heap size
attribute. The unit of these values are in megabytes.
So, we consider permutation of the heap sizes for
three different parameters and five GC algorithms to
run on individual benchmark application. As heap
size plays an important role while running different
GC algorithms on a particular application, we consider
this as a critical feature. Therefore there are 5x113
permutations of commands used for collecting execution
time of benchmark applications which is considered as
training data for the machine learning model. We have
used 6655 sets of input parameters on each benchmark
application and find the GC algorithm that provides
minimum execution time for each particular application.

Singer et al. [2]] used Jikes RVM which has the
problem of booting if the heap size is less than SMB.
For that reason they considered the smallest heap size
for which the application successfully completes and
there is no out-of-memory errors from Jikes RVM
compiler.To avoid the issue we overlooked using Jikes
RVM and we set the lowest heap size to 16 megabytes.
In a similar work, Soman et al. [20] used a single metric
to decide when to change the GC algorithm. They
used the ratio of the current heap size to the minimum
possible heap size for each benchmark. DaCapo
study represents separate heaps for VM objects and for
application objects [13]. We use DaCapo as one of
the benchmarks. As SPECjvm2008 [21] is targeted for
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measuring the performance of both JVM and hardware
systems, we used this benchmark for training our model.

As our work is focused on performance of
application with respect to GC allocation techniques,
preference is given to find the GC technique which
provides minimum execution time. For that reason heap
size and GC allocation algorithms are taken as VM
metrics for feature extraction.

5.1.4. Statistical Metrics Most of the works
consider a subset of the earlier metrics as features.
However, we find several motivations to use additional
statistical metrics as features over the standalone
use. For example, two different classes, with similar
behavior such as method call, are likely to provide
similar static metrics. = Those classes might have
other local and global variable declaration along with
conditional loops and branches. To avoid having similar
static metrics for such classes, we intend to apply
statistical metrics such as entropy and complexity in
parallel with other metrics as initial features. We use
Shannon entropy to calculate the quantity of information
from a discrete source such as class files of benchmark
programs. Entropy is a measure of unpredictability
or information content in a random variable. For a
random variable X with n outcomes z1,...,z,, the
Shannon entropy, a measure of uncertainty is defined by
H(X) = — Y0 pla,) log p(s).

We also use complexity of a program x that measures the
length of the shortest program that generates . Among
different compression algorithms used for measuring
complexity we used Lempel-ziv algorithm [22].

5.2. Benchmarks

In the following, we describe the benchmark
programs used in our experiments. Note that lack
of good benchmark suites is one of the significant
issues in memory management research. While there
is certainly more scope for the improvement, we select
three widely used memory management benchmarks
such as SPECJvm2008, Dacapo, and JOlden[ﬂ We
briefly mention the benchmark information in Table[3]

The three benchmark suites include different types of
programs such as mathematical computations, sorting,
and image processing. The programs consists of simple
to complex and time consuming computation. Hence,
the GC algorithms encounter low to high load during
the collection for these programs.

5.3. GC Algorithms

In the following we present five different GC
algorithms which are used in most of the Java virtual
machines. Serial GC is mainly designed for single
threaded environment and for simple heap. It uses

Uhttp://www.mm-net.org.uk/resources/benchmarks.html

Table 3: Benchmarks used for the experiments

\ Suite [ Benchmark [ Description |
bh Mathematical computation
bisort Sorting
em3d Mathematical computation
health Process simulation
mst Minimum spanning tree

JOlden perimeter | Image processing

power Process simulation
treeadd Tree traversal
tsp Graph optimization

voronoi Image processing

compiler Front end Java compiler
compress Data compression
crypto Cryptographic algorithms

derby Database logic and lock computation
MPEGaudio | Mp3 decoder
SPECJvm2008 | scimark Floating point computation

serial Serialization and de-serialization
of objects

startup Multi-threaded optimization

sunflow Graphics visualization

xml XML transformation

avrora AVR microcontrollers

tomcat Web server

batik Scalable Vector Graphics (SVG) images
Dacapo eclipse JDT performance tests

xalan XML to HTML converter

fop PDF generator

mark-copy algorithm for the Young Generation
and mark-sweep-compact for the 01d Generation
which are incapable of parallelizing the tasks. Young
Generation means the location where most of the
newly created objects are located. After the creation,
some objects disappear from the location. When objects
are removed from Young Generation, we say a
minor GC is performed. O1d Generation means
the location where the set of objects that are reachable
and also survived from the textttYoung Generation are
located. The size of the 01d Generation is bigger
and generally performs GC when the allocated space for
old generation is full and this is why GC occurs less
frequently here in compare to textttYoung Generation.
The GC stops all application threads whenever it is
working. As the Serial GC does not use multiple cores,
it is not recommended to use in server environment.

While the serial GC uses only one thread to perform
garbage collection, the parallel GC uses several threads
to process a GC. In addition, it performs minor
collection in parallel which reduces garbage collection
overhead ﬂ This GC is helpful when there is sufficient
main memory and a large number of cores. It is also
called the “throughput GC”. However, these collectors
are still prone to long pauses and in that time interval,
application threads are stopped.

Like parallel GC, the G1 collector is a server-side
GC, designed for multi-processor machines with enough
memories. G1 GC is built to make the duration of
stop-the-world pauses because of garbage collection
predictable and also, configurable. It is known that G1

2https://cndezthoy.com/201 7/08/06/basics-of-java-garbage-collection/
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is a soft real-time GC which means programmers are
allowed to set certain performance goals.

The CMS algorithm is built to avoid long pauses due
to performing collection at the O1d Generation.
The algorithm has two stages. At the beginning,
instead of compacting the 01d Generation, it uses
free lists to manage reclaimed space. It mostly
performs collection activity in the mark-and-sweep
phases concurrently with application. The aim of doing
that is not to stop the application threads. However,
the algorithm will still keep pace with the application
threads for processor time. Thus, by default, the number
of threads used by this GC algorithm is equal to % of the
number of physical cores of a particular machineﬂ

The Par New GC algorithm parallelizes the copying
collection over several threads, which is generally more
efficient than the single-thread copying collector for
multi threaded multi-processor machines. In compare
to a single threaded copying collector, the algorithm
accelerates Young Generation collection by a
factor that is equal to the total available processors.

5.4. Learning Algorithm

We used several machine learning algorithms (both
probabilistic and non-probabilistic) to validate our
proposed approach. The algorithms include Logistic
regression (LR), Linear discriminant analysis (LDA),
Naive Bayes (NB), Multilayer perceptron (MLP),
and Support vector machine (SVM). Among all the
algorithms, we mainly focus on Support vector machine
due to consistent behavior with both datasets. We set the
default parameters for all the learning algorithms except
SVM and MLP during the experiments. In the case of
MLP, we use three hidden layers and two output layers.
Additionally, we set stochastic gradient descent as the
solver and &« = 1 x 1075. For SVM, we set radial
basis function as a kernel parameter and class weight as
balanced. Note that Logistic regression and Naive Bayes
perform well on both original and transformed datasets.

In the following we present a brief introduction
to SVM classifier which we adopted to solve our
multi-class classification problem. In particular our
benchmark dataset consists of five different labels due
to the garbage collection algorithms. A support vector
machine constructs a hyperplane or hyperplanes in
a high dimensional space, which can be used for
classification, regression, and others tasks. The width of
separating hyperplane defines the lower generalization
error margin of the SVM classifier. The standard SVM
is defined for binary classification problem which can be
extended for multi-class as well using “one-against-one”
approach [23]]. In the case of M classes, the extended

binary SVM (multi-class SVM) constructs *X(M=1)

classifiers which trains two classes each. For our

3https://p]umbr,io/handbnok/garbage-collection-algorithms-imp]ementations

particular problem, the given training data X' € R?,
i=1,2,3,...,zandavector Y € {1,2,...,5}*,SVM
solves the following primal problem:

1 n
B%I} inw +C ; Gi
®)
subjectto  y;(w ' ¢(x;) +b) > 1 — G,
Ci ZO,i:L...,z
Its dual is:
1
min iaTQa —e'a
(6)

subjectto  y o =0,
0<<Cii=1,...,2

where e denotes a vector of all ones 1, C' > 0 is the
upper bound, @ is a z X z positive semi-definite matrix
where Q;; = v;y; K (x;, ;). K(.)is the kernel function
where K (z;,7;) = ¢(x;) " ¢(x;). The training data is
mapped into a higher dimensional space by the function
¢. The decision function for classification is:

sgn(z yioi K (i) + p) (N
i=1

where p is the interzept parameter. In our experiment,
we used linear kernel with upper bound C' = 1.

6. Evaluation

In this section, we first describe the datasets
properties with respect to different heap size. Next,
we discuss the classification results and analysis for
Jolden, Dacapo, and SPEC2008 benchmarks. We
use Java virtual machine version 1.8.0_.161 for all
experimental settings. Dacapo and SPEC2008 data
are being processed for the evaluations.

Figure [3| presents the garbage collection time for
five garbage collection algorithms with respect to
different heap settings. The settings include minimum,
maximum, and initial heap allocation sizes.  For
example, setting O refers to a triple of (16,16,16)
megabytes as (initial, minimum, maximum) heap size.
We present the first 50 settings for visual clarity. Note
that maximum heap size can not be more than the initial
heap size. This rule is followed in all the experimental
settings. The figure shows that Concurrent Mark Sweep
algorithm performs unsteadily compared to other three
algorithms. This is due to the Concurrent Mark Sweep
algorithm having multiple concurrent phases. However,
very few of them are not concurrent. As a result, these
few non-concurrent phases are responsible to pause the
currently running program. In addition, Concurrent
Mark Sweep algorithm can fail if the collector does not
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reclaim the garbage object before the maximum tenured
generation. Moreover, there is no available space for
tenured generation at the time of explicitly calling GC
(e.g., System.gc ()).

124 — Panallel GC
ConcMarkSweep GC
— GIGC

—— ParNew GC

Serial GC

1.0

0.8

0.6 4

0.4

Garbage collection time (seconds)

0.24

0.0

Settings

Figure 3: Execution time behavior for “scimark” in
SPEC2008 benchmark.

Figure [4| presents the collection time for the four
GC algorithms for running “compress” program in the
SPEC2008 benchmark. We notice similar behavior for
Concurrent mark sweep algorithm. On the other hand,
Parallel GC and Serial GC algorithms perform better in
terms of minimum garbage collection. However, we also
notice overlap in garbage collection for different heap
settings. Therefore, it is impractical to apply rule base
to find the optimal GC for new test program. Hence, we
use learning algorithms that adaptively select the best
GC for a particular program.

—— Panallel GC
ConcMarkSweep GC
— GIGC
0.5 — PaNew GC

ion time (seconds)

0 10 20 30 40 50
Settings

Figure 4: Garbage collection time behavior for
“compress” in SPEC2008 benchmark.

First, we present the precision and accuracy in
Figure [5] for Jolden data. We vary the threshold
similarity between 0.5 and 0.9 that indicate the cosine
similarity between any two instances (e.g., one test
and another train example vector). The figure also
demonstrates that both accuracy and precision have
improved scores beyond similarity threshold of 0.8.

Next we discuss the precision on original Jolden
dataset using our second approach mentioned in
Section Note that, we present each data using

—8— original data
51 —#— transformed data

T T T T T T T T T
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

1 —@— original data
| —®— transformed data

Precision
o

050 055 060 065 070 075 080 085 090
similarity threshold

Figure 5: Accuracy and precision score for original
and transformed data with respect to varying
threshold similarity (Jolden).

two formations such as original and transformed. The
original data consists of four types of features mentioned
in step 2 in Figure Later, the original data is
transformed using non-negative matrix factorization.
The feature dimension for the transformed data is set
using d = min(m,n) where dim,m,n refers to
transformed feature dimension, number of rows and
columns of original data, respectively.

Figure [6a] presents the precision scores of different
learning algorithms for Jolden data. From the figure,
we observe that except Latent Discriminant Analysis
(LDA), the other algorithms perform well with the
increment in iteration. Hence, we consider LDA as
baseline due to its degraded performance. We obtain
Logistic Regression (LR) as a top performer in this
experiment. We present the first 10 iterations for
simplicity. Note that the classification is performed
using 10-fold cross validation.

Figure [6b] presents precision scores on the
transformed data. It is evident from the result
that even the worst performing classifier performs
eventually better in the transformed data with the
increment in iteration count. We observe that all of the
considered algorithms perform well upon consideration
of feature transformation. The results shows that the
maximum precision of 0.90 is achieved for Logistic
Regression.  The main reason for this significant
improvement is using a latent space that helps creating
more distinguishable features.

Figure [/a] presents the precision scores of the same
set of learning algorithms for Dacapo benchmark data.
Similar to the prior experiment, we also consider LDA
as a baseline. The other algorithms perform remarkable
with the increase in iteration count and the classification
is performed using 10-fold cross validation.

Figure [7b] presents precision scores on the
transformed data. The experimental result depicts
that the maximum precision of 0.94 is achieved when
using Naive Bayes classifier. The underlying reason
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Figure 6: Precision values of different classification algorithms for Jolden benchmark.
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Figure 7: Precision values of different classification algorithms for Dacapo benchmark.

Table 4: Precision and accuracy scores of two
approaches for two versions of learning for Jolden
and Dacapo data. (max and sd values are reported)

Benchmark Algorithms x Original — Transformed_ -
ccuracy | precision | Accuracy | precision
Jolden ACGC+cosine (Algl) 0.59,0.26 | 0.40,0.18 | 0.45,0.20 | 0.28,0.08
ACGC+learning (Alg2) [ 0.84,0.28 | 0.83,0.22 | 0.95,0.33 | 0.94,0.32
Dacapo ACGC+cosine (Algl) 0.48,0.12 | 0.43,0.15 | 0.56,0.18 | 0.52,0.21
ACGC+learning (Alg2) | 0.86,0.21 | 0.76,0.23 | 0.94,0.27 | 0.89,0.28

for the improvement is similar to prior experiment
that is the creation of more distinguishable features by
utilizing latent space. However, we do not observe any
noticeable improvement for Multi Layer Perceptron
(MLP) and Support Vector Machine (SVM).

Finally, we present a simple representation of
precision and accuracy scores of both approaches for
Jolden and Dacapo data in Table The results
indicate improved performance for ACGC with the ML
algorithms (Algorithm [2)) for both benchmarks.

7. Conclusion

We posed the problem of optimal GC selection
for a particular program as a supervised, binary class
learning. In our formulation, the classes corresponds to
existing garbage collection algorithms. We introduced a
novel feature transformation method using non-negative
matrix factorization. This enabled us to efficiently carry
out the assignment of garbage collection algorithms to
unknown programs. Our proposed methods consist of
four major steps: Data collection and preprocessing,
Model building, Feature generation & transformation,
and Classification. One important positive aspect of
our method is that the model building step is done
only once before the feature generation, providing
increased flexibility and computational cost reduction.
We evaluated our approach using precision scores.
The evaluation shows that our feature generation and
classification approach outperforms baseline method.
In conclusion, this paper demonstrates that ACGC can
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be posed as a feature extraction and transformation
technique. Additionally, assigning unknown programs
to the best garbage collection algorithm without looking
at the inherent contents can be made tractable and
accurate. Our proposed formulation is general and
offers a potentially different mode of thinking about
adaptive and concurrent garbage collection in Java
virtual machine. ~ Our implementation is publicly
available in githukﬂ We are planning a future work
that can exploit recurrent neural network to investigate
deeply to increase the prediction rate of selecting more
suitable application specific GC especially to improve
performance of computationally intensive programs [24]
25].
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