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Abstract—Acute mountain sickness (AMS) is a potentially life-
threatening condition that affects many individuals traveling to
high altitudes. Early diagnosis is crucial, especially for travelers
who may not have immediate access to medical resources. While
traditional machine learning (ML) methods have been used to
detect AMS using biomedical data (e.g., heart rate, blood oxygen
saturation, respiration rate, blood pressure, and body tempera-
ture), hyperdimensional computing (HDC) has yet to be explored
for this purpose using the few of biomedical data. Previous
classification methods fall short of balancing accuracy with low
hardware complexity, but HDC offers a promising solution. HDC
provides a hardware-efficient alternative solution, making it well-
suited for resource-constrained environments, such as wearable
devices. Its lightweight architecture and efficient memory man-
agement make it ideal for embedded systems, enabling real-
time AMS detection with accuracy comparable to traditional
ML models. We introduce AMS-HD, a novel framework that
leverages custom feature engineering and quasi-random hyper-
vector encoding to further enhance the efficiency and accuracy of
HDC for AMS detection. The proposed framework demonstrates
the potential for seamless integration into wearable biomedical
devices for on-the-go health monitoring.

I. INTRODUCTION

Acute mountain sickness (AMS) is a common medical
condition that can affect individuals who ascend rapidly to
high altitudes, typically above 2, 500 meters, where the par-
tial pressure of oxygen in the air decreases. Some common
symptoms of AMS include headaches, nausea, tiredness, and
vomiting, which can start at 6 ´ 12 hours after reaching
a high altitude. If AMS is left untreated, it can lead to
life-threatening severe consequences such as high altitude
cerebral edema [1]. Early detection and alerting patients to
the symptoms is highly important. Leveraging lightweight
wearable devices for continuous monitoring of vital signals can
be a promising solution. If symptoms are analyzed promptly,
early diagnosis could save many lives. Conventional machine
learning (ML) methods have been explored for this task [2].
However, they are computationally intensive and unsuitable
for regular and prompt diagnoses. For the first time, this
work proposes an alternative solution for fast, accurate, and
resource-efficient detection of AMS by leveraging an emerging
model of computing, hyperdimensional computing (HDC).

HDC is an emerging paradigm that mimics certain key
brain functions to create efficient and noise-resistant ML
models [3], [4]. HDC has proven effective in various learning
tasks, demonstrating strengths in both performance and relia-
bility [5], [6]. The foundation of HDC is based on the concept
that the essential aspects of human memory, perception, and
thinking can be represented through mathematical properties
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Fig. 1. Overview of an HDC framework: encoding, training, and
similarity check.

of hyperdimensional spaces. High-dimensional vectors, termed
hypervectors (HVs), define the space in which HDC operates.
HDC models consist of randomly arranged binary (‘0’s and
‘1’s in logic systems) or bipolar values (‘´1’s and ‘`1’s
in software platforms). This unconventional representation
enables fast, reliable, and parallel processing of large amounts
of data [7]. HVs are one-dimensional vectors with D bi-
nary elements, where D ranges from hundreds to thousands.
Achieving high-quality results requires orthogonality between
HVs, meaning the HVs must be independent of one another.
Traditional HDC systems generate pseudo-random vectors
which are nearly orthogonal. Low-discrepancy (LD) sequences
have been recently introduced to improve orthogonality be-
tween HVs inspired by quasi-randomness suggested for high-
quality bit-streams in stochastic computing [8], [9].

Fig. 1 illustrates an overview of an HDC system. The system
encodes the training and test data similarly based on the
input features (f ). The encoded vectors are processed using
simple logical operations such as XOR, Add, Shift, and
Permute. All encoded training samples contribute to the ML
model. Each class of the contributing data outputs a Class HV .
During the inference, the test samples are encoded with similar
encoding steps. A query HV is returned for each sample. In the
classification phase, the system checks the similarity between
the Class HVs and the incoming query. The highest similarity
indicates the closest match, the class of the test sample.

This work introduces AMS-HD, an HDC framework for
fast and efficient AMS detection. Accurate feature encoding
is essential for compelling AMS detection with HDC. The
proposed framework enhances data encoding and feature engi-
neering to efficiently process health-related information at high
altitudes. AMS-HD enables real-time analysis of vital signs to
facilitate proactive measures against AMS. The proposed solu-
tion highlights HDC’s potential to transform health monitoring
and predictive analytics, contributing to safer experiences at
high altitudes. With its acceptable classification performance,
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our solution can be integrated seamlessly into low-cost, low-
power devices like pulse oximeters and smartwatches, making
it ideal for real-time monitoring and early detection of AMS.

II. BACKGROUND

A. Conventional ML in AMS Prediction

ML algorithms can predict the severity of AMS, helping
individuals take necessary precautions and descend from the
high-altitude area if needed. Prior studies proposed ML algo-
rithms such as regression and classification on physiological
and environmental data for AMS detection [10]. Yang et
al. [11] used ML to predict the susceptibility of severe AMS
(sAMS) based on genetic data. However, real-time processing
of genetic data is complicated and challenging. More physical
and easy-to-handle data such as blood oxygen saturation SpO2
and Heart Rate data are valuable to discovering the potential
risk of AMS [12]. Information such as altitude, ambient
temperature, atmospheric pressure, relative humidity, climbing
speed, and heart rate variability can also be used for more
accurate detection. Bagged trees, logistic regression (LR),
linear support vector machines (SVM), and weighted k-nearest
neighbor (kNN) are examples of prior approaches in the litera-
ture [2]. Moreover, there are connections between sleep quality
and AMS, measured by intermittent hypoxia training, another
research area on AMS. By generating pseudo-labels for AMS
susceptibility and training a long short-term memory model
to classify hypoxia tolerance, Wang et al. achieved acceptable
results for AMS detection [13], [14]. While effective, all
these prior solutions rely on powerful computers for real-time
processing. However, when it comes to real-time processing
with cost-effective and lightweight solutions with low power,
run-time, and memory usage, an HDC-based solution can offer
significant benefits.

B. An Emerging Computing Paradigm: HDC

HDC is a computational model each data point is rep-
resented by an HV consisting of hundreds to thousands of
binary/bipolar components. HVs are generated randomly to
provide near/full orthogonality. HDC excels at representing
symbolic information. The orthogonality helps a learning
system easily distinguish between unique symbols. HDC is
also robust against noise and errors. This stems from its unique
data representation that does not depend on the significance
of individual bits, such as the least significant bit (LSB), most
significant bit (MSB), or sign bit.

HDC encoding involves several operations, such as binding,
bundling, shifting, and permutation [15]. The information from
HDC vectors is retrained in a new composite HV using
binding operations. Element-wise multiplication on bipolar
values (˘1) (XOR on 1-0 binary vectors) produces resultant
HV . Combining multiple HVs into a single vector is known
as bundling. This preserves the robustness of the data by
aggregating holistic information with an invertible function.
Permutation is another operation that preserves orthogonality
by randomly rearranging the HV elements [16]. Conventional
HDC uses pseudo-random methods for generating HVs. How-
ever, this could lead to poor orthogonality and performance
degradation [17]. Recent works use quasi-random sequences,
like Sobol sequences [6], [18], for better orthogonality and
higher quality and accuracy in HDC.
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Fig. 2. An HDC classifier for language text processing. n-gram
processing is exemplified. ❶: Random vector generation, ❷: Or-
thogonality preservation via shifting, ❸: Binding, ❹: Bundling, and
❺: Binarization via subtract from a threshold.

HDC has been used for many applications and ML
tasks [19]. Fig. 2 illustrates the basic HDC operations over
a language processing case study. Step ❶ includes vector
generation. Text symbols (i.e., letters) are converted to D-
sized HVs using a random number generator (LFSR: Linear
feedback shift register -pseudo-random source-) and a com-
parator. HVs require orthogonality, so random numbers are
compared with a 0.5 threshold value for 50%-50% `1 and ´1
ratio in the vectors. The generated vectors are then utilized in
encoding starting from Step ❷. The shifting operation keeps
orthogonality before the multiplication (i.e., XOR), and the
resultant vector is also orthogonal to the multiplicands. The
language processing example in Fig. 2 utilizes n-gram pro-
cessing, similar to 1-dimensional convolutions on the incoming
text to be represented in the final HV . Step ❸ applies 3-
gram multiplications (binding) of each 3-element subset in
the text, yielding an n-gram HV at each subset. In Step ❹,
the resultant n-gram vectors are added column-wise (bundling)
using a simple counter. Up to this step, any incoming text for
the class-of-interest (here, the English language) contributes
to the accumulation. When the training set is scanned for
the corresponding class, a binarization is applied in Step ❺.
This is the class HV that represents the English class in this
example. Other languages are processed similarly, and other
class HVs are obtained for language classifications. Class HVs
are the model of the ML system ready to be deployed on
any resource-constrained device such as wearable devices. Any
incoming query follows the same encoding steps during the
real-time processing, being compared by each class HV . A
simple dot product (or cosine similarity, hamming distance,
etc.) is applied between each class HV and the query vector;
the highest similarity is the classification decision.

III. PROPOSED AMS-HD

In this section, we explain the step-by-step process of our
HDC classifier for classifying AMS based on two physio-
logical parameters: heartbeat rate (HR) and SpO2 (Oxygen
Saturation). SpO2 measures the percentage of oxygen in
the blood, while HR indicates the number of heartbeats per
minute. As shown in Fig. 3, AMS-HD leverages HDC for
binary and multiclass classifications of AMS. Unlike the prior
art, this work focuses on feature engineering, data mining,
and performance evaluation aspects of HDC in a tabloid
biomedical data (i.e., patient samples on different altitudes
recorded in a table with AMS scores) classification system.
We discuss each component of the proposed system, from the
data to the HDC classifier part.
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A. Dataset Overview
In this study, we utilize a dataset that captures the body’s

response to stress in high-altitude environments, focusing on
immune system changes through blood sample analysis. The
original dataset included features such as SpO2 (%), HR
(bpm), carbon monoxide - CO (%), CO (ppm), and AMS
Score [20]. From these, we selected two key features: SpO2
and HR. Our tasks are divided into binary (as in Fig. 3
Step-I) and multiclass classifications. The AMS risk scoring
system ranges from 1 to 12. For the binary case, an AMS score
of 3 or higher is labeled as ‘AMS’ with an alerting situation,
while scores below 3 are labeled as ‘NO AMS.’ For the
multiclass classification, the AMS severity is categorized into
three levels: mild (3–5), moderate (6–9), and severe (10–12),
following the standardized classification of AMS [21].

B. Data Preparation and Feature Engineering
Selecting the right features from the dataset illustrated in

Step-I of Fig. 3 is crucial in any ML task. In Step-II,
we select features P1, P2, . . . , Pm from the dataset. We apply
offline feature engineering to the dataset during training to
enhance the quality and relevance of the input data. By tuning
HR and SpO2 features, we improve the model’s predictive
accuracy and ability to identify potential health risks at high
altitudes. We propose a formulation: Rn “

Hp

sw`ϵ , where Hp is
the HR (or other sensor value) and sw is the standard deviation
of the corresponding feature with a negligibly small constant, ϵ
(e.g.10´6) that prevents division by zero. In Fig. 3, the P (blue)

represents features: HR, SpO2. They are transformed through
feature engineering into this final vector, P. The division
symbol in Step-II represents the heart rate divided by the
oxygen saturation and yields the combined sensor package,
P, in feature engineering. The proposed approach operates on
the input data matrix APRnˆm. There are n samples and m
scalar features in A, such as HR, SpO2, and sickness score.
Step-III, shows the features in case other combined sensors
exist (multiple Ps) holding scalar numerical information (in
floating point) accumulated.

C. Positional Encoding and Data Projection
The engineered features are encoded by positional encoding,

denoted by E. These positions are projected afterward with
matrix multiplication. Matrix B helps fix the dimensionality in
Step-IV. In the HDC system, this resembles the binding (❸)
operation. The positionally encoded vector Ei is an enhanced
feature representation of the data by each position. These
values are normalized using z-score normalization, where µ
and σ represent the mean and standard deviation of features:
zi “

Ei´µ
σ .

D. HV Generation
To represent all features combined, non-binary scalars or

floating-point HVs must be created. In Step-V, random HVs
Hi P RDˆm are employed to produce feature vectors. In our
HDC framework, His are projected to accumulate using a
similar approach to bundling (➋). These projected HVs have
a higher dimensionality D than the original feature space.
These HVs are used to map the feature vectors into a high-
dimensional space (depth, not feature-wise n), allowing for
efficient encoding of patterns within the dataset. Following the
bundling operation, the resulting scalars (Xs) are converted
to the binary domain, creating the S class HV . This process
utilizes either a⃝ pseudo-random or b⃝ quasi-random sources
following the recent trend in state-of-the-art HDC designs.

1) a⃝ Pseudo-random HV Generation (HDC-R): In the
first approach (Fig. 3 Step-V a⃝ ), pseudo-random HVs are
created by using pseudo-random numbers from a hardware
module such as an LFSR or a software platform (such as
the rand() function in Python or MATLAB). The random
numbers can also be generated based on predefined random
sequences. These may provide hand-crafted randomness to
maintain statistical properties that are beneficial for the clas-
sification task of HDC. Pseudo-orthogonal class HVs are
approximately well-distinguished from each other. However,
multiple iterations may be required during the training phase to
find the best random number candidates during the generation
of HVs.

2) b⃝ Quasi-random HV Generation (HDC-Q): Quasi-
random HVs (Fig. 3 Step-V b⃝) are generated by using
quasi-random sequences, such as Sobol [8]. These sequences
are often called LD sequences [22], as they provide recur-
rent properties with more uniform distributions than pseudo-
random sequences. The orthogonality properties are superior
to the pseudo-random case, providing better vector representa-
tion. Quasi-random HVs efficiently cover the space for high-
dimensional features, resulting in a better performance.
Step-V is similar to Step ❶ of Fig. 2: vector generation

with comparison. In Fig. 3, both in a⃝ and b⃝, random numbers
are compared with Xi; if the random number is less than
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Xi, S vector position is set to ‘`1’, otherwise it is set to
‘´1’. In hardware, these values are set by logic-1 and logic-0,
respectively.

E. HD Classifier
Step-VI in Fig. 3 demonstrates the HDC classifier. By

combining the contributions from each class (S) using accu-
mulation, we create the final deployable model. Each class
represents the ‘AMS’ versus ‘NO AMS’ binary classifier or
AMS severity screening for mild, moderate, and severe cases.
The similarity check in the testing phase compares the input
with those predefined class HVs S1, S2, . . . , Sa. Cosine sim-
ilarity computes the similarity between a testing query HV
and each class HV defined as pHV, Siq “ HV¨Si

}HV}}Si}
. The

classifier calculates the similarity score for each class in the
model versus the query, and the class with the highest score
is selected as the predicted class for the input sample.

IV. EXPERIMENTAL RESULTS

Fig. 4 compares the training and testing accuracy of various
ML classifiers with the HDC method for binary (Fig. 4(a))
and multiclass (Fig. 4(b)) AMS classification. For binary
classification with conventional ML, the highest test accuracy
was achieved by LR and SVM with 73%, while the lowest
was from the random forest (RF) with 53% success. However,
in multiclass classification, one of the best performance was
achieved by quasi-random HDC similar to RF, SVM, and
(naive Bayes) NB with a test accuracy of 73%. Regarding
timing, HDC exhibits the shortest training times, with the
quasi-random method achieving the lowest inference time in
Fig. 5.

Table I shows the performance comparison for the binary
and multiclass classifiers. Quasi-random and pseudo-random
have the lowest memory (0.0002 MB) and power consump-
tion (min: 2.6W , max: 3.3W ), highlighting better memory

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT MODELS REGARDING

MEMORY USAGE, POWER, AND ENERGY.
Model Mem (MB) Min P (W) Max P (W) Avg E (J)
HDC-Q 0.0002 2.6 3.0 0.02120
HDC-R 0.0002 2.6 3.3 0.02655

NB 0.0003 ↑ 2.7 ↑ 3.6 ↑ 0.00285 ↓
SVM 0.0010 ↑ 2.7 ↑ 3.6 ↑ 0.00533 ↓
LR 0.0003 ↑ 2.7 ↑ 3.6 ↑ 0.00753 ↓
RF 0.0003 ↑ 2.7 ↑ 3.6 ↑ 0.01512 ↓

Arrows indicate increases (↑) or decreases (↓) compared to HDC.

TABLE II
CLASSIFICATION PERFORMANCE OF VARIOUS MODELS

Binary RF LR SVM NB HDC-R HDC-Q
Accuracy 0.79 0.79 0.79 0.79 0.70 0.70

Recall 0.69 0.69 0.69 0.69 0.68 0.68

F1-score 0.64 0.64 0.64 0.64 0.66 0.66

Multiclass RF LR SVM NB HDC-R HDC-Q
Accuracy 0.78 0.53 0.86 0.86 0.72 0.72

Recall 0.75 0.56 0.72 0.72 0.64 0.72

F1-score 0.73 0.54 0.73 0.73 0.64 0.72

and power usage in HDC methods. NB uses more memory
but is the most energy-efficient model. Conventional models
consume more memory and power (P), which makes them
unsuitable for power-constrained designs.

Performance results for different models for binary and
multiclass are summarized in Table II. The precision score
observed in all models was relatively consistent, with all
conventional methods leading to 79% accuracy for binary clas-
sification. The HDC models (HDC-R, HDC-Q) show slightly
lower accuracy around 70%. On the other hand, their Recall
and F1-score are consistent across all the compared models,
and the competitive F1-score is around 66% for the HDC
models. For multiclass classification, SVM excels with the
highest accuracy of 86% and F1-score of 73%. The HDC-
Q model maintains consistent performance with accuracy,
recall, and F1-score of 72%. The overall performance of
HDC demonstrates competitive results, especially in multiclass
tasks, providing a good balance between F1-score and recall.

V. CONCLUSION

HDC offers a powerful solution for various ML tasks,
especially in biomedical applications. This work introduced
AMS-HD, an HDC framework for real-time, accurate, and
resource-efficient detection of acute mountain sickness (AMS).
The proposed framework is highly suitable for real-time health
monitoring and AMS diagnosis at altitude. AMS-HD can be
integrated with wearable and IoT devices for enhanced health
monitoring and timely interventions, saving many lives.
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